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Abstract

Cardiac arrest leads to complex neurological outcomes,
demanding accurate predictions to guide post-arrest care.
Using the International Cardiac Arrest Research Consor-
tium (I-CARE) dataset, we developed models to discern
between “good” and “poor” neurological outcomes post-
cardiac arrest. We concatenated clinically relevant, man-
ually extracted EEG features with autoencoder-derived,
automatically extracted features to train transformer and
Bi-LSTM models. Additionally, we ensembled the pre-
dicted probabilities between these deep learning models
with a statistical model trained on non-EEG clinical vari-
ables. This ensemble approach demonstrated that the
transformer excel at capturing long-term temporal depen-
dencies, and the fusion of features and prognosis decisions
led to improved model performance in terms of AUROC in
predicting neurological outcomes post-cardiac arrest.

1. Introduction

Annually, over 6 million people worldwide experience
cardiac arrests. Most survivors incur severe brain injury,
and many, once in the ICU, remain comatose [1]. In the
days after the arrest, physicians give a prognosis on the
patient’s chances of regaining consciousness. A positive
outlook may extend care, whereas a negative one may lead
to discontinuing life support. Yet, the subjectivity in these
prognoses can lead to inaccuracies, adversely affecting pa-
tient outcomes [2].

Electroencephalography (EEG) is an objective tool to
monitor brain activity and estimate neurological recovery
after cardiac arrest. However, the analysis of EEG sig-
nals requires considerable resources and the expertise of
specialized neurologists [3]. Advancements in machine
learning (ML) offer automated EEG analysis solutions that
can improve prognostic accuracy while making the pro-
cess more accessible for healthcare systems. Particularly,
deep learning (DL) techniques have outperformed tradi-
tional ML in handling the complexities of EEG data, with
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sequential Bidirectional Long Short Term Memory (Bi-
LSTM) networks proving adept at capturing dependencies
for interval predictions [4]. The same group also demon-
strated that the Bi-LSTM model can be further improved
by using Convolutional Neural Network (CNN) extracted
features and decision fusion with a Random Forest (RF)
classifier [5]. Separately, Hessulf et al. showed that an
Extreme Gradient Boosting model can achieve high per-
formance using non-EEG clinical data [6].

Utilizing the I-CARE dataset, our study aims to develop
a prognostic framework for differentiating “good” ver-
sus “poor” neurological outcomes, approached as a binary
classification challenge. We improved on existing meth-
ods by integrating manually extracted EEG features with
those obtained from unsupervised representation learning.
We also explored the efficacy of time series transformers in
capturing these features and their temporal dependencies.
Our approach combines predictions from the deep learning
(DL) model with a clinical data-driven model, highlighting
the benefits of feature and decision fusion, and evaluat-
ing whether transformers outperform traditional sequential
models in this domain.

2. Methods

2.1. Dataset and Preprocessing

The dataset comprises continuous EEG readings from
over 1,000 comatose patients. Out study uses a subset of
509 subjects with over 24 hours of complete 19-channel
EEG recordings. Beyond the EEG data, this dataset in-
corporates clinical variables such as patient demographics,
targeted temperature management (TTM), return of spon-
taneous circulation (ROSC), and the presence of shock-
able rhythms [5]. The neurological outcomes are cate-
gorized using the Cerebral Performance Category (CPC)
scale, which ranges from 1 to 5. A score of 1 indicates
optimal neurological function and 5 signifies mortality.

The EEG data was preprocessed with a 6th order But-
terworth bandpass filter with cutoff frequencies at [0.5, 30]
Hz, also removing the utility frequencies [S]. The filtered
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data was then downsampled to a rate of 100 Hz. To gen-
erate binary classification labels of patient outcomes, we
grouped CPC scores of 1 to 3 and 4 to 5 as “good” and
“poor” outcomes, respectively.

2.2. Feature Extraction

We employed both clinically relevant, manual feature
extraction and data-driven, automated feature extraction
approaches at non-overlapping 5-minute intervals shown
in Fig. la. The use of both manual and automated ap-
proaches enhances the robustness of the features extracted,
improving their suitability for model training.

For manual feature extraction, we derived eight distinct
features that were previously identified by neurophysiol-
ogists as being predictive of poor outcomes [7]. These
features include the power bands for § (0.5-4 Hz), 6 (4-
7 Hz), o (8-15 Hz), and 3 (16-30 Hz), as well as the «/¢
ratio, Shannon entropy, burst suppression ratio and regu-
larity. Power band features were extracted from the es-
timated Power Spectral Density (PSD) using the Morlet
wavelet. Shannon entropy was calculated to capture the
signal’s complexity and predictability. The burst suppres-
sion ratio, indicative of poor neurological recovery, was
extracted using recursive mean and variance estimation.
Lastly, regularity was calculated to discern continuous pat-
terns from burst suppression patterns.

We trained an autoencoder (AE) for automated feature
extraction (Fig. 1b). The AE encodes EEG signals into a
latent space representation and uses a decoder for signal re-
construction. The architecture for the encoder and decoder
was adapted from EEGNet—a compact CNN known for its
effectiveness in brain-computer interface tasks [7]. As de-
scribed in Fig. 1b, EEGNet begins with a temporal convo-
lution, followed by a depthwise convolution for spatial rep-
resentations. Average pooling was used for dimensionality
reduction, and dropout layers were used for regularization.
Lastly, a separable convolution is employed, learning the
individual feature maps before merging them to provide a
detailed representation. After training the AE to maximize
the peak signal-to-noise ratio, we used the encoder to au-
tomatically extract features from the EEG segments.

2.3. Pipeline and Experiment Setup

We aimed to predict neurological outcomes of each pa-
tient using 6-hour epochs of EEG feature data, spanning
from O to 72 hours post-ROSC. For our analyses, we
worked with three distinct EEG feature sets. The first
set was based on manually extracted features, the second
drew from the autoencoder, and the third combined fea-
tures from both methods. Each 6-hour epoch was paired
with an average of all previous epochs to expand our train-
ing samples and offer historical context. Missing data

Manual Features
(1x152)

Autoencoder Features
(1x144)

Decoder ..~/

‘\ - Features

Encoder
Architecture h

Temporal Conv. Spatial Conv. Separable Conv.

Avg. Pooling
III Dropout : % :
-

Figure 1. (a) Each non-overlapping 5-minute window is
represented with features of size 1x296 after applying both
manual and automated feature extractions. (b) The autoen-
coder used for automated feature extraction consists of an
encoder and a decoder adapted from EEGNet.

within epochs was imputed using data from the nearest
epoch. We split the dataset into 70% training, 10% val-
idation, and 20% testing, ensuring no overlap of patient
data across these sets.

Two deep learning models were employed: a Bi-LSTM
and a Transformer with linear and convolutional embed-
dings, plus randomized positional encoding. Both aimed
to minimize the negative log likelihood loss. We applied
grid search for hyperparameter tuning. Early stopping was
set at 20 unchanged epochs. The Adam optimizer was used
with L2 regularization and a learning rate scheduler that
adjusted rates if the loss plateaued over 5 epochs. Training
was performed on a GeForce RTX 4090 GPU.

For clinical data, we used features including Age, Sex,
Hospital, ROSC, out-of-hospital cardiac arrest presence,
TTM, and initial thythm shockability. We trained statisti-
cal models such as Support Vector Machine (SVM), Lo-
gistic Regression (LR), and Random Forest (RF) on this
data [6]. The final output combined predictions from these
models with our deep learning models to estimate the prob-
ability of poor outcomes at each 6-hour epoch.

3. Results

We assessed our models on the test set using Accuracy,
F1-Score, and Area Under the Receiver Operating Char-
acteristic curve (AUROC), measured at 6-hour intervals
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Figure 2. For every 6-hour epoch, the pipeline concatenates the average features from all historical windows with the
features from the current window. BiSTM and Transformer models are applied to the combined features. The output of
these models is then combined with the output from a logistical regression model that was trained with clinical variables.

FC: Fully connected layers.

from 12 hours post-ROSC. Fig. 3 illustrates the averaged
AUROC over time, contrasting the transformer (3a) and
Bi-LSTM (3b) models trained with different feature sets
(manual vs. autoencoder), and their combination. Be-
yond 30 hours, the combined features yielded superior re-
sults compared to using either alone. Notably, integrating
probabilistic estimates from the LR clinical data model en-
hanced AUROC across all time points.

During the initial 12 to 30 hours post-ROSC, both mod-
els exhibited low AUROC scores, with a noticeable per-
formance improvement between 48 and 60 hours, before a
post-60-hour decrease. Isolating the feature sets revealed
distinct model behaviors: the transformer consistently out-
performed on autoencoder-derived features, while the Bi-
LSTM showed strength with manually extracted features,
matching or surpassing the combined features at 18 and
42 hours. The transformer’s average AUROC followed a
stable, predictable path, unlike the Bi-LSTM’s, which dis-
played more erratic and variable progression over time.

For a more holistic view on model performance, Table 1
shows a comparative display of Accuracy and F1-Score for
the deep learning and clinical data models at the 48 hour
post-ROSC mark. Contrary to the AUROC performance,
both the transformer and Bi-LSTM achieved higher accu-
racy and F1-Score using the autoencoder-derived feature
as oppose to the combined features. Among the three clin-
ical data models we examined, LR resulted in the best per-
formance across all metrics, substantiating its integration
into our ensemble for final decision fusion.

The incorporation of a logistic regression clinical model
has notably improved early predictions when EEG data
is limited. As time progresses, the benefit of this addi-
tion diminishes as the deep learning model’s performance
strengthens. Nonetheless, the clinical model’s contribution
to early prognostication remains a valuable asset for initial
assessments post-ROSC.
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Figure 3. AUROC at every 6 hour interval for (a) trans-
former models (b) Bi-LSTM models with each feature set.s

4. Discussion

Our study highlights that by combining autoencoder-
derived and manually extracted features, we were able
to improve the AUROC for transformer and Bi-LSTM
models. The transformer model, in particular, display a
marked increase in performance over time. Furthermore,
we demonstrated that by ensembling the deep learning
model predictions with those from the clinical data model
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Table 1. Additional Metrics for Models at 48 Hours

Model Feature Accuracy F1-Score
Manual 0.55 0.62

Bi-LSTM Autoencoder 0.60 0.68
Combined 0.59 0.62
Manual 0.60 0.68

Transformer Autoencoder 0.67 0.75
Combined 0.63 0.70

LR 0.81 0.88

SVM Clinical 0.71 0.80

RF 0.74 0.81

strengthens the prognostic performance.

We also observed differences in different time series
model architectures favoring different kinds of features
sets. Transformers excel with autoencoder-derived fea-
tures, possibly due to their capacity to process non-linear,
long-range dependencies [8]. In contrast, the Bi-LSTM
model demonstrates a propensity for manually extracted
features, reflecting its capacity to process immediate tem-
poral sequences. Moreover, the transformer model’s per-
formance not only remains consistently higher over time
but also aligns more closely with the clinical timeline,
where prognostication is customarily deferred several days
post-ROSC, thereby underscoring its suitability for captur-
ing the prognostic patterns essential for delayed decision-
making in clinical settings.

Lastly, we observed a discernible change in the AUROC
commencing at 24 hours post-ROSC, as well as a pro-
nounced decline at the 72-hour mark. This is most likely
due to the density difference of training segments: there
are 3000 segments at 30 hours and 1600 at 72 hours. The
temporal alignment of peak model performance with peri-
ods of heightened data availability suggests that the mod-
els benefit from the increased volume and richness of the
contextual data provided during these intervals.

We recognize that the study has several limitations. The
concatenation approach used for the manual feature extrac-
tion from individual channels could benefit from dimen-
sionality reduction to mitigate noise. The lack of artifact
removal in our methodology introduces additional noise
that future studies should address. An exploration into the
specific contributions of attention mechanisms, perhaps
with an attention-based LSTM model, can lead to insights
on why the transformer is better at modeling nuanced de-
pendencies [9].

5. Conclusion

Our multi-level deep learning strategy shows potential
for predicting neurological outcomes following cardiac ar-

rest. Fusing manually extracted and autoencoder-derived
EEG features, alongside ensembling with a clinical model,

our framework improves predictive accuracy. The trans-
former models outperform Bi-LSTM for autoencoder and
combined features. Including LR predictions from clini-
cal data also enhances early post-ROSC predictive perfor-
mance in the absence of EEG. Future efforts should opti-
mize feature extraction and increase the model’s tolerance
to noise. This work establishes a baseline for automatic
neurological prognostication in ICU settings.
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